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Table 1. Coupling of Alcohols with Olefins@
2 mol % RhCI(PPh3);

The sg—sp? C—C bond formation has been one of the most
significant but challenging basic subjects in organic chemistry. The

effects toward the direct and selective formation of thé—sp? R, 2.5 equiv BF3OEt, R2 OH

_ ia ivati intriqui Tol
c-C _bond via C-H _bond activation have long been mtngumg R1,\ + RORICHOH o ue.ne o s
organic chemists. Since the landmark report of the ruthenium- 05 equiv BuBr R4
catalyzed hydroarylation of alkenes by Murai and co-worke@mne 85%C
good pioneering progresses have been achieved in thig Asa. Jield
continuegl rgsearch in our group OH-.C bond formation via eH. entry olefin (RY, R?) alcohol (RS, RY) product  (%)°
bond activatior, recently we interestingly found that the combina- Rl=Ph R=H R = CHs R'= H 1a_ 70
tion of BROEtL with Wilkinson catalyst RhCI(PR); could 2 R!=Ph R=H R3=n-Pr, R = H 1b 70
promote effectively a new cross-coupling reaction between the 3 R!=Ph,R=H R:=i-Pr,RR=H lc 68
primary aliphatic alcohol and the olefin, which could be developed 4 Ri =Ph,R=H , Rg =nCigHy, R*=H 1d 74
to a new method for the synthesis of secondary alcohol. To the > R — 2-MeGeH, R — H R _ CHs, R4: H le 65

: . . . R! = 3-MeGHq4, R?=H R3=CH;, R*=H 1f 78

be_st of our knowledge, th_ls klnq of _|ntermolecular reaction _of 7  R'=4-MeGH, R2=H R3= CHs, R*=H 1g 63
primary aliphatic alcohols with olefins via Rh-catalyzed/Lewis acid- 8 R!=2-OMeGH4, R2=H R3=CHs, R*=H c
assisted €H bond activation has not been reporfefihe most 9 R'=3-OMeGHa, R§= H R:= CH, R*=H i1h 57
significant aspect of our work is the discovery that rhodium- 10 R'=4-OMeGH, R*=H R®=CHs R'=H . ¢

tal d C-H bond activati f alcohols is f il der Lewi Rl = 4-(CH,Cl)CgHs4, R2=H R3=CHs; R*=H i 71
catalyze ond activation of alcohols is feasible under Lewis 15 g = 1.paphthyl, R = H R3= CHs R = H j 73
acid-promoted conditions. 13 R'=2-CICH,, R2=H R3= CHs, R =H 1k 66

We commenced our studies in the experimental procedure: a 14 R =2-BrGH, RZ=H R®=CHs R*=H iU 64
mixture of styrene (1 equiv), ethanol (10 equiv), and RhCIgPPh 15 iz IZD}]NOR;CG"I';H R?=H Féé = 8:3 gjz : . Gi

. i . . ° = s = = 3, = m

(0.02 equiv) in freshly distilled solvent was stlrr_ed ﬁ?h at 55°C RL— CHs, R2 = CHs RE=nChHis RA=H 1n 31
under argon atmosphere. Subsequently, Lewis acid was added t01g R.=ph, R=H R3= CHs, R*=CH; c

the above reaction system, and the resulting mixture was further
stirred for 24 h efficiently. Following this general procedure, various
Lewis acids (TiCl, Ti(Oi-Pr),, CuCh, BF;-OEtb, BF;*N(n-Bu)s,

BEt;, and B(Q-Pr)) and solvents (benzene, toluendjexane, Cht

CN, DME, DMF, and DMSO) were examined (Scheme 1). As a
result, the expected 4-phenylbutan-2-ol product could be obtained Scheme 1. Optimization Studies

by use of styrene, ethanol, Wilkinson catalyst (RhCI(B8hand 2mol % Rh* OH

aFor detailed experimental operation, see Supporting Information.
blsolated yields of expected productsComplicated products, and no
expected products were isolatéd\No reaction.e With 1 equiv of alcohol,
20 equiv of olefin, room temperature.

BF3-OEt in the mole ratios of 1:10:0.02:2.5 in toluene, although N s 'l-'A'
the yield was merely 27%. Importantly, it should be noticed that ©/\ + EtOH Azd‘;:\rl‘;
this reaction did not work in the absence of Lewis acicBFED. 55 9C

Through further GEMS analyses, the major byproducts in this Ar
reaction proved to mainly come from the Fried€rafts reaction
between styrene and toluérand, minorly, from the dimerization ~ those with the electron-withdrawing group (entries 13 and 14)
of styrene® No ether produétresulting from the ethanol ©H reacted very slowly and usually a longer reaction tirr@ @ays)
addition with the olefin double bond was isolated. To optimize this Was required. The coupling reaction for 2-nitrostyrene (entry 15)
reaction, BuBr (0.5 equiv) as an additive was chosen to suppressbearing the strong electron-withdrawing group could not even occur
the undesired FriedelCrafts reaction of olefin with toluene, and  under the present condition. Furthermore, aromatic olefins bearing
pleasingly, the good yield of 70% was afforded. the ortho- or para-substituent reacted more quickly than those
Following the above optimized condition, some other alcohols bearing themetasubstituted group (entries-3.0); consequently,
and olefins, as depicted in Table 1, were further investigated, from the 2 (or 4)-methoxy styrene reacted too rapidly to isolate the
which it could be seen that the coupling of a series of the primary expected products. It is particularly notable that the disubstituted
aliphatic alcohols (entries-14) and various olefins (entries-%, aromatic olefin (entry 16) gave the desired products in good isolated
9, 11-14, 16, and 17) could proceed smoothly to afford the Yield (64%). To expand the scope of substrates, we further examined
corresponding secondary alcohol products in good vyields. In the disubstituted aliphatic olefin (entry 17) and obtained the
addition, the electronic effect of the substituents of aromatic olefins expected product, although the yield was merely 31%. However,
was also observed. For example, the substrates with an electronthe monosubstituted aliphatic olefim-fiexene) was ineffective
rich group on the aromatic ring (entries-52) reacted rapidly, while under this reaction condition, which maybe supported a possible
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Scheme 2. Deuterium Crossover Experiment sch radical reactidf® " to afford the secondary alcohol product
D OH H OH by releasing the Rh(l) catalysts for the next cycle.
+ In summary, we have first successfully developed a new Rh-
+ CH,CD,0H D D ] . . . )
N g;semgt EF catalyzed/Lewis acid-promoted~<C bond formation with olefins
©/\ via sp C—H activation of aliphatic alcohols, which can be simply
+ CHy(CH),0H ©)\/K/\ @/\/\/\ performed in good yields without the need to sacrifice any extra
Molok;co,on : Mol chycrzyon = 11 1 = functional groups. The more detailed and widespread investigation

of this new reaction is underway.
Scheme 3. Plausible Reaction Mechanism
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